Abstract
Low-temperature plasma nitriding of austenitic stainless steel can ensure that its corrosion resistance does not deteriorate, improving surface hardness and wear performance. Nevertheless, it requires a longer processing time. The hollow cathode discharge effect helps increase the plasma density quickly while radiatively heating the workpiece. This work is based on the hollow cathode discharge effect to perform a rapid nitriding strengthening treatment on AISI 304 stainless steels. The experiments were conducted at three different temperatures (450, 475, and 500 °C) for 1 h in an ammonia atmosphere. The samples were characterized using various techniques, including SEM, AFM, XPS, XRD, and micro-hardness measurement. Potentiodynamic polarization and electrochemical impedance spectroscopy methods were employed to assess the electrochemical behavior of the different samples in a 3.5% NaCl solution. The finding suggests that rapid hollow cathode plasma nitriding can enhance the hardness, wear resistance, and corrosion properties of AISI 304 stainless steel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.