Abstract

Brain demyelination sometimes follows rapid correction of hyponatremia, especially if the hyponatremia is chronic. During correction brain water decreases and the brain shrinks. The present study examined whether such shrinkage might be sufficient to disrupt the tight junctions of the blood-brain barrier. Barrier intactness was evaluated using magnetic resonance imaging and intravenous gadolinium contrast administration. Hypertonic saline infusion rapidly increased the plasma sodium concentration and caused barrier disruption more frequently in chronic than in acute hyponatremic rats. Similar increases in plasma sodium concentration did not disrupt the barrier in normonatremic rats. The disruption appeared to be due to altered plasma osmolality since infusion of hypertonic mannitol, which raised plasma osmolality without changing the plasma sodium concentration, disrupted the barrier in hyponatremic but not normonatremic rats. Moreover, the osmotic threshold for barrier disruption was lowest in chronic hyponatremia, intermediate in acute hyponatremia, and highest in normonatremia. The greater susceptibility to osmotic disruption in chronic hyponatremia suggests that blood-brain barrier disruption may play a significant role in causing the demyelination sometimes found following too rapid correction of hyponatremia, possibly through exposure of oligodendrocytes to plasma macromolecules such as complement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.