Abstract

In this study, we investigate the sputtering yield of tungsten surfaces by energetic particles, focusing on the effect of surface orientation and the incoming irradiation angle, by means of molecular dynamics. We develop a simulation approach to simulate sputtering from completely random surface orientations. This allows obtaining the sputtering yields averaged over a sufficiently large number of orientations, to obtain statistically significant yields representative of a polycrystalline sample with random grain orientations. We find that the total sputtering yield is dependent on the surface orientation, and that the results for random surfaces are clearly different from that of any of the low-index ones or their average. The different low index surfaces and the random surfaces also showed that the sputtering yield is dependent on the incoming angle of the ion. The outgoing angle of the sputtered tungsten atoms was observed to be very sensitive to the surface orientation. Different features on the tungsten surface were observed to drastically affect the sputtering yield at certain angles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call