Abstract
The evolution of nonlinear Langmuir waves in the interplanetary medium is investigated by appropriately accounting for the random density irregularities of the medium. A pair of modified Zakharov equations, which describe these waves, is solved numerically as an initial value problem for large scale (≫ 102 km) initial pertubations. For an ion acoustic-Langmuir solitary wave, the random irregularities damp the Langmuir wave by way of scattering and let the ion density perturbation radiate away in a few days. However an initial solitary or shock-like Langmuir wave excites the ion density perturbations within a fraction of a second, and then itself gets damped. These effects will strongly decelerate the collapse of large scale Langmuir waves. The possibility of detecting these processes, by means of interplanetary scintillation, is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.