Abstract

ObjectivesTigecycline is an antibacterial agent restricted for use against carbapenem-resistant Klebsiella pneumoniae (CRKP). This study aimed to identify the tigecycline resistance mechanism in clinical CRKP isolates obtained from a 60-year-old femalepatient during tigecycline treatment. MethodsThree K. pneumoniae isolates obtained during tigecycline treatment were subjected to antimicrobial susceptibility testing, pulsed-field gel electrophoresis (PFGE), multilocus sequence typing, and whole-genome sequencing and analysis. The function of ramR was confirmed by gene complementation. ResultsThree K. pneumoniae isolates (W814, W112 and W113) were collected from the patient on Days 0, 10 and 13, respectively, of ongoing tigecycline treatment. Antimicrobial susceptibility testing showed resistance to all antibiotics except tigecycline and ceftazidime/avibactam. The tigecycline minimum inhibitory concentration (MIC) for strains W814 and W112 was 4 mg/L compared with 16 mg/L for strain W113. The three strains belonged to sequence type 11 (ST11) and had a similar PGFE pattern. Insertion sequence (IS) element ISKpn18 in ramR was identified in strain W113. A parent strain transformed with plasmid pCR2.1-Hyg carrying ramR enhanced tigecycline susceptibility, thus confirming that a loss-of-function insertion in ramR contributes to tigecycline resistance. ConclusionISKpn18 insertion in the ramR gene contributes to the tigecycline resistance mechanism in the isolated K. pneumoniae strains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call