Abstract

BackgroundThe effect of rainfall patterns on soil surface CO2 efflux, soil moisture, soil temperature and plant growth was investigated in a grassland ecosystem of northern Ontario, Canada, where climatic change is predicted to introduce new precipitation regimes. Rain shelters were established in a fallow field consisting mainly of Trifolium hybridum L., Trifolium pratense L., and Phleum pratense L. Daytime ambient air temperatures within the shelters increased by an average of 1.9°C similar to predicted future increases in air temperatures for this region. To simulate six precipitation regimes which cover the maximum range to be expected under climate change, a portable irrigation system was designed to modify the frequency of monthly rainfall events with a constant delivery rate of water, while maintaining contemporary average precipitation volumes. Controls consisted of blocks irrigated with frequencies and total monthly precipitation consistent with the 25 year average rainfall for this location.ResultsSeasonal soil moisture correlated with soil surface CO2 efflux (R = 0.756, P < 0.001) and above ground plant biomass (R = 0.447, P = 0.029). By reducing irrigation frequency, soil surface CO2 efflux decreased by 80%, P < 0.001, while soil moisture content decreased by 42%, P < 0.001.ConclusionsManipulating the number of precipitation events and inter-rainfall intervals, while maintaining monthly rainfall averages impacted CO2 efflux and plant growth. Even with monthly rainfall averages that are similar to contemporary monthly precipitation averages, decreasing the number of monthly rainfall events reduced soil surface CO2 efflux and plant growth through soil moisture deficits. Although many have speculated that climate change will increase ecosystem productivity, our results show that a reduction in the number of monthly rainfall events while maintaining monthly averages will limit carbon dynamics.

Highlights

  • The effect of rainfall patterns on soil surface CO2 efflux, soil moisture, soil temperature and plant growth was investigated in a grassland ecosystem of northern Ontario, Canada, where climatic change is predicted to introduce new precipitation regimes

  • Ecologists must determine the influence of climate change on specific ecosystems in order to predict its impact at the local level

  • The ecological dynamics that governed the establishment, succession, and maintenance of contemporary ecosystems may be altered dramatically under climate change: 1) possibly climate change will introduce new climatic extremes that may completely override contemporary ecological precepts regarding species distribution [2]; 2) current ecosystems are the result of thousands of years of interaction between climate and vegetation whereas new ecosystem types should rapidly develop under climate change [3]; and 3) human influences at the local and regional levels may restrict species migration, succession and dispersion across landscapes [4]

Read more

Summary

Introduction

The effect of rainfall patterns on soil surface CO2 efflux, soil moisture, soil temperature and plant growth was investigated in a grassland ecosystem of northern Ontario, Canada, where climatic change is predicted to introduce new precipitation regimes. One of the greatest contemporary challenges in terrestrial ecology is to determine the future impact of climate change on the world's ecosystems. Ecologists must determine the influence of climate change on specific ecosystems in order to predict its impact at the local level. The ecological dynamics that governed the establishment, succession, and maintenance of contemporary ecosystems may be altered dramatically under climate change: 1) possibly climate change will introduce new climatic extremes that may completely override contemporary ecological precepts regarding species distribution [2]; 2) current ecosystems are the result of thousands of years of interaction between climate and vegetation whereas new ecosystem types should rapidly develop under climate change [3]; and 3) human influences at the local and regional levels may restrict species migration, succession and dispersion across landscapes [4]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call