Abstract

AbstractA plastic‐covered ridge and furrow farming of rainfall collecting (RC) system were designed to increase water availability to corn for improving and stabilizing agricultural production in the semiarid Loess region of northwest China. This system comprised two elements: the ridge mulched by plastic film that acts as a rainfall harvesting zone and the furrow as a planting zone. To adopt this system for large‐scale use in the semiarid region and bring it into full play, it is necessary to test the appropriate rainfall range for RC farming. A field study (using corn as an indicator crop) combined with rainfall simulation was conducted to determine the effect of RC on soil moisture, root characteristic parameters and the yield of corn under three different rainfall levels (230, 340 and 440 mm) during the growing seasons of 2006 and 2007. The results indicated that with the rainfalls ranging within 230–440 mm, the soil moisture at 0–100 cm depth for RC system in furrows was significantly higher (P < 0.05) than that of conventional flat (CF for control) practice. At 100–200 cm soil depth, there was no significant difference (P > 0.05) between soil moisture in the RC230plots and in the CF230plots during the corn growing seasons, while the soil moisture both in the RC340and RC440plots were significantly higher (P < 0.05) than those in the CF340and CF440plots. The root length, root surface area, root volume and root dry weight for RC230and RC340plots all significantly increased (P < 0.05) compared with CF230and CF340plots, but these root characteristic parameters at 440 mm rainfall slightly decreased compared with those of CF practice. Compared with the CF230–440pattern, the increasing amplitude of grain yield under the RC230–440pattern diminished with the rainfall increase and there was no obvious yield‐incrementing effect (P > 0.05) between two patterns at 440 mm rainfall in 2006. In comparison with these two farming practices, the RC system not only improved soil moisture of dry farmland, but also promoted the development of corn root systems when the rainfall ranged between 230 and 440 mm. Thus, it could be concluded that the optimal upper rainfall limit for the RC system is below 440 mm in the experiment. For corn, the adoption of the RC practice in the 230–440 mm rainfall area will make the system more effective during the whole growth period and offer a sound opportunity for sustainable farming in semiarid areas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.