Abstract

The reaction-diffusion-advection properties of autocatalytic fronts are studied both theoretically and experimentally in the case where the autocatalytic species is injected radially into the reactant at a constant flow rate. The theoretical part analyzes both polar and spherical cases. At long times or equivalently large radius from the injection point, the well-known properties of one-dimensional reaction-diffusion autocatalytic fronts are logically recovered as the influence of the advection field decreases radially. At earlier times however, the radial advection impacts the dynamics of the front. We characterize numerically the influence in this transient regime of the injection flow rate and of the ratio of initial concentration of reactant and autocatalytic product on the position of the front, the reaction rate and the amount of product generated. We confirm experimentally the theoretical predictions in polar geometries using the autocatalytic chlorite-tetrathionate reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.