Abstract

Chlorosomes of green photosynthetic bacterium Chlorobium tepidum contain aggregates of bacteriochlorophyll c (BChl c) with carotenoids and isoprenoid quinones. BChl aggregates with very similar optical properties can be prepared also in vitro either in non-polar solvents or in aqueous buffers with addition of lipids and/or carotenoids. In this work, we show that the aggregation of BChl c in aqueous buffer can be induced also by quinones (vitamin K(1 )and K(2)), provided they are non-polar due to a hydrophobic side-chain. Polar vitamin K(3, )which possess the same functional group as K(1 )and K(2), does not induce the aggregation. The results confirm a principal role of the hydrophobic interactions as a driving force for the aggregation of chlorosomal BChls. The chlorosomal quinones play an important role in a redox-dependent excitation quenching, which may protect the cells against damage under oxygenic conditions. We found that aggregates of BChl c with vitamin K(1 )and K(2) exhibit an excitation quenching as well. The amplitude of the quenching depends on quinone concentration, as determined from fluorescence measurements. No lipid is necessary to induce the quenching, which therefore originates mainly from interactions of BChl c with quinones incorporated in the aggregate structure. In contrast, only a weak quenching was observed for dimers of BChl c in buffer (either with or without vitamin K(3)) and also for BChl c aggregates prepared with a lipid (lecithin). Thus, the weak quenching seems to be a property of BChl c itself.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.