Abstract
Stringent emissions standards for NOx and carbon monoxide (CO) prompt lean combustor development. With this motivation, combustion stability issues emerge since the desired operating point approaches the lean blowout limit. In this paper, an atmospheric, 15 kW lean premixed prevaporizing-type swirl burner, equipped with a plain jet airblast atomizer, was investigated at various atomizing pressures and combustion air flow rates, using quarls from 0 deg to 60 deg in 15 deg steps. Both the 15 deg and the 30 deg quarls provided a 42% higher lean blowout stability on average in terms of mean mixing tube discharge velocity, compared to the baseline burner. However, the superior stability regime was encumbered by a rapidly increasing CO emission. In parallel, the NOx emission vanished due to the more dilution air and incomplete combustion. The 60 deg quarl provided a moderately extended blowout stability limitation, while the NOx emission slightly increased and the CO emission reduced compared to the baseline burner.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.