Abstract

This report describes the effect of quantum interference on the absorption of light in a quantum emitter and metamaterial system. The system was comprised of a dielectric substrate doped with quantum emitters and metallic split ring resonators that included metallic rods. At the interface between the dielectric substrate and the metal are surface plasmon polaritons; these interact with excitons, which are present in quantum emitters. Quantum interference occurs due to the interaction between excitons and surface plasmon polaritons. It is also considered that excitons decay from an excited state to the ground state due to the radiative and nonradiative decay processes. The quantum interference phenomenon occurs between excitons decay rates. The density matrix method is used to calculate the absorption of light in the presence of both radiative and nonradiative processes. It is found that there is a decrease in the absorption of light by metamaterial hybrids due to quantum interference. There is also an increase in the absorption of light when the resonant frequencies of two excitons are in resonance with the surface plasmon polariton. Absorption peaks are shifted and broadened due to the surface plasmon polariton coupling. These findings suggest that the optical absorption properties of a metamaterial hybrid can be tuned by doping the supporting substrate with quantum emitters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call