Abstract

This work developed a simple and time-dependent method to synthesize CuO nanoribbons. For this, the concentration of the precursor salt (CuCl2), surfactant (PVP), and reaction times were varied, keeping constant the reducing agent (NaBH4). SEM, TEM, XRD, and EDS characterized CuO ribbon-like particles' morphology, chemical composition, and structure. SEM studies confirmed that CuO nanoribbons appear after three weeks of reaction aging by mixing CuCl2 (17 mM), NaBH4 (26 mM), and PVP (1.6 mM). The nanoribbons have a relatively low aspect ratio of 2 to 3 µm long and around 60 nm wide. XRD and TEM confirmed the monoclinic structure of the CuO nanoribbons. SEM micrographs also indicated that as the salt concentration decreases to 10 mM, the size of the products decreases, and nanosheet-like nanostructures with lengths less than 1 μm and thicknesses of 100 nm are formed. PVP was found to have a great influence on the morphology of the nanostructures. For example, low amounts of PVP increase particle oxidation, easily driving the formation of CuO nanoribbons. At the same time, larger amounts stabilize the formation of Cu2O octahedral particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.