Abstract

We elucidate the separate effect of a thin Cr coating deposited by physical vapor deposition (PVD) on the subcooled flow boiling performance of zircaloy-4. First, we run flow boiling experiments on prototypical zircaloy-4 surfaces mimicking the scratch pattern and surface roughness of nuclear reactor claddings. Then, we PVD-coat a 0.3 µm thick chromium layer on the same exact surface and repeat the same flow boiling investigations. All experiments are run using deionized water at atmospheric pressure, flowing on a 1 × 3 cm2 rectangular cross section channel at a rate of 1000 kg/m2/s and a subcooling of 10 K. We measure the average temperature of the boiling surface at increasing surface heat fluxes, covering a wide range of heat transfer regimes, from single-phase forced convection to the boiling crisis. We also record high-speed videos of the boiling process, which we postprocess to measure bubble nucleation site density, growth time, departure diameter and frequency. The surface analysis reveals that, while the chromium coating does not seem change the surface roughness and morphology, it improves surface wettability. However, it decreases the critical heat flux. The chromium coating causes an increase of nucleation temperature, bubble departure diameter and growth time, and a reduction of the nucleation site density. The concurrence of these observations indicates that a size reduction of the nucleation sites, conformally covered by the chromium coating, may be the cause of the boiling performance deterioration. We confirm this hypothesis repeating the same analysis on a FeCrAl sample prepared and tested using the same protocol as the zircaloy-4 sample, but with a different initial surface texture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.