Abstract

The objective of this article is to determine the effect of three different putting grips (conventional, cross-hand, and one-handed) on variations in eye and head movements during the putting stroke. Seven volunteer novice players, ranging in age from 21 to 22 years, participated in the study. During each experimental session, the subject stood on a specially designed platform covered with artificial turf and putted golf balls towards a standard golf hole. The three different types of grips were tested at two distances: 3 and 9 ft. For each condition, 20 putts were attempted. For each putt, data were recorded over a 3-s interval at a sampling rate of 100 Hz. Eye movements were recorded using a helmet-mounted eye movement monitor. Head rotation about an imaginary axis through the top of the head and its center-of-rotation was measured by means of a potentiometer mounted on a fixed frame and coupled to the helmet. Putter-head motion was measured using a linear array of infrared phototransistors embedded in the platform. The standard deviation (STD, relative to the initial level) was calculated for eye and head movements over the duration of the putt (i.e., from the beginning of the backstroke, through the forward stroke, to impact). The averaged STD for the attempted putts was calculated for each subject. Then, the averaged STDs and other data for the seven subjects were statistically compared across the three grip conditions. The STD of eye movements were greater (p < 0.1) for conventional than cross-hand (9 ft) and one-handed (3 and 9 ft) grips. Also, the STD of head movements were greater (p < 0.1; 3 ft) for conventional than cross-hand and one-handed grips. Vestibulo-ocular responses associated with head rotations could be observed in many 9 ft and some 3 ft putts. The duration of the putt was significantly longer (p < 0.05; 3 and 9 ft) for the one-handed than conventional and cross-hand grips. Finally, performance, or percentage putts made, was significantly better (p <0.05; 9 ft) for cross-hand than conventional grip. The smaller variations, both in eye movements during longer putts and head movements during shorter putts, using cross-hand and one-handed grips may explain why some golfers, based on their playing experience, prefer these over the conventional grip. Also, the longer duration for the one-handed grip, which improves tempo, may explain why some senior players prefer the long-shaft (effectively one-handed grip) putter.

Highlights

  • Sports medicine is becoming a very popular means of addressing specific questions posed by athletes concerning the body’s forces and actions during athletic motions

  • Typical 9-ft putt time courses for the three putter-grip styles are shown in Figs. 9A-C to illustrate the general pattern of responses

  • Note that at about the moment of impact, there is a saccadic eye movement in the direction of the hole, which may possibly affect the release of the putter following impact

Read more

Summary

Introduction

Sports medicine is becoming a very popular means of addressing specific questions posed by athletes concerning the body’s forces and actions during athletic motions. It has, for example, provided valuable information about the golf swing and physical forces impacting on the golf ball. There is a surprising lack of objective simultaneous measurements of eye and head motion during the golf swing, especially in putting. Golf teaching professionals and sports psychologists specific to golf have long taught the importance of minimal or no eye and head movements throughout the putting stroke. If eyes are fixated elsewhere at a position other than the ball, this can lead to an improper stroke and a missed putt. If the head moves during the stroke, this can lead to misalignment and a missed putt

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call