Abstract

The oxygen reduction reaction has been investigated on acid-treated single-walled (SWCNT) and multi-walled carbon nanotubes (MWCNT) modified glassy carbon (GC) electrodes in acid media using the rotating disk electrode (RDE) method. Different acids were used for the carbon nanotube (CNT) purification. A systematic study was carried out to elucidate whether the metal catalyst impurities of CNTs play a role in the electroreduction of oxygen on the CNT modified GC electrodes. The surface morphology of the carbon nanotube samples was examined by transmission electron microscopy and the concentration of metal catalysts in the CNT materials was determined by energy dispersive X-ray spectroscopy. The acid-treated MWCNTs were also characterised by Raman and X-ray photoelectron spectroscopies. Aqueous suspensions of SWCNTs and MWCNTs used for GC surface modification were prepared in the presence of Nafion. The RDE results indicated that the acid-treated CNT modified GC electrodes are less active catalysts for oxygen reduction than as-received CNTs which could be explained by the absence of metal catalysts on the surface of purified CNTs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call