Abstract

The deficiency for quantum dots (QDs) used as optical amplified medium (such as QD-doped fibers) is nonradiative Auger recombination based on multiple exciton state, which is related to pump power, pump frequency, and pump wavelength. Thus, the Auger recombination lifetime was introduced in the existing three-level system, further the emission of PbSe QD-doped optical fiber as a function of pump parameters mentioned above was simulated in order to maximize emission intensity and optical gain. The emission intensity increased first and then saturated with the pump power, showing good agreement with the experimental data. An optimal pump power maximizing the emission intensity was observed, which is distinguished from the non-Auger decay-result that the emission intensity increased with the pump power in a linear way. The emission intensity increased with the increasing pump frequency (from 4 to 10 × 10 4 Hz). In addition, 532-nm pump light was confirmed to enhance the output intensity compared to the other longer wavelengths. The relationship between emission intensity and pump fluence is similar to that of the experimental data. The maximal optical gain of 11.5 dB was obtained. The threshold pump power decreased with the increasing pump frequency, in which situation, larger pump power was needed to achieve the optical gain saturation. This research might be a theoretical basis for QD-doped optical fiber amplifiers and lasers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.