Abstract

Although various NOx removal technologies have been commercialized, NOx emissions are still so high that they cannot meet the newest standard and endanger the eco-environment and human health. Meanwhile, some NOx reduction technologies suffer from high costs. Recently, a cheap and pending technology called gas-fired coal preheating has surfaced again. This method introduces hot flue gas to heat a coal stream to high temperatures before the coal stream is injected into a utility boiler for combustion, thus resulting in a reduction in NOx. Considering the complex mechanisms during preheating, the effect of the preheating parameters, including temperature, residence time, excess air ratio, and coal type, are studied in a laboratory-scale drop-tube furnace in detail. Meanwhile, by means of Chemkin coupled with the mature NOx reduction mechanisms of GRI-mesh3.0 and Dagaut, as well as a CPD model, a detailed kinetics analysis on NO removal, including the migration and transformation of hydrocarbons and nitrogen...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.