Abstract

In recent years, almond has been considered as one of the most common alternative plant-based protein sources due to its nutritional attributes and health benefits. However, almond protein has a lower digestibility compared with the animal protein. The objective of this study is to investigate the impact of pulsed high-intensity ultrasound on the secondary structure of the almond protein. The changes in the in-vitro protein digestibility (IVPD %) are also evaluated to investigate the relationship between the structure and digestibility of the almond protein. The secondary structures were analyzed using Fourier-transform infrared spectroscopy (FT-IR) and circular dichroism (CD) spectroscopy. FT-IR analysis showed a slight relocation in the ordered and unordered structures in the ultrasonicated almond protein compared to the control. CD spectroscopy revealed that ultrasound resulted in the restructuring of α-helices into β-sheets. However, upon treating the almond protein for 16 min, a slight recovery in α-helices was observed. Moisture content was found to affect the secondary structure orientations of almond protein significantly. Although the IVPD% change was not statistically significant, it was found to be increasing slightly with processing duration and was dependent on protein secondary structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.