Abstract

Austenitic stainless steels are of prime importance in many industrial sectors because of their excellent corrosion resistance; however, their poor mechanical and tribological features lead to their reduced applicability. In this regard, low-temperature cathodic cage plasma nitriding (CCPN) can be used to improve surface properties of steels without scarifying the inherent corrosion resistance. In this study, AISI-316 samples are processed in CCPN reactor at a temperature of 400 °C, for the treatment time of 4 h, at a pressure of 150 Pa and variable pulsed duty cycle (15–75%). The microstructure and mechanical features are analyzed using x-ray diffraction, scanning electron microscopy, microhardness tester and ball-on-disc wear tester. The anodic polarization test in 3.5% NaCl is conducted to examine the corrosion properties. The results show that hardness is enhanced up to 1327 HV at low duty cycle, which is considerably higher than base material (278 HV). The wear rate is found to be reduced up to 90% over base material by processing at low duty cycle. The base material exhibits severe abrasive wear, and the nitrided sample has dominant adhesive wear. The corrosion rate is found to be reduced up to 95% over base material for the sample nitrided at low duty cycle. This study shows that wear and corrosion resistance in CCPN can be significantly boosted by reducing the pulsed duty cycle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call