Abstract

In a Stirling-type pulse tube refrigerator (PTR), the pulse tube volume affects the dynamic behavior of a linear compressor as well as the cooling performance of PTR. In this study, PTRs which have different pulse tube volume are tested and simulated. The simulation code is verified with the experimental measurement of piston displacement, pressure wave, input power and cooling capacity. And then, the power transfer from the electric power input to the cooling capacity is explained with the simulation results. The smaller pulse tube increases the resonant frequency of a linear compressor and suppresses the piston motion because it imposes larger gas spring effect and also larger gas damping effect to the piston. The smaller one allows larger power transfer from electric power to expansion PV work despite the smaller piston displacement, but shows less cooling capacity due to larger thermal losses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call