Abstract
We have investigated nonlinear laser ̶ matter interaction inside silicon under tight focusing conditions by continuously tuning driving pulse duration from femtosecond to picosecond timescales. Such tailoring of laser pulse width provides a new route for energy delivery into a microvolume avoiding two-photon absorption and plasma defocusing in the pre-focal region. As a result, we have achieved values of saturated deposited energy density and plasma electron concentration of as high as 1 kJ cm−3 and 1019 cm−3 respectively, which is lower than the threshold of irreversible structural transformation. For further increase of energy delivery inside silicon, a two-color technique supported by extremely tight focusing can be realized, forming a roadmap to the 3D industrial micromachining of planar bulk silicon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.