Abstract

The effect of radial pulsations on the stability of a compressible cylindrical gas column surrounded by an ambient liquid is discussed. In the absence of pulsations, the stationary interface is susceptible to the Rayleigh capillary instability, which promotes the growth of longitudinal waves whose wave length is larger than 2π times the column radius, irrespective of the Reynolds number. A Floquet stability analysis for potential flow shows that the pulsations further destabilize the interface by extending the range of unstable wave numbers to a sequence of islands. A similar stability analysis for Stokes flow shows that the pulsations also have a destabilizing influence, though the presence of an insoluble surfactant has a competing stabilizing influence that may cause an overall reduction in the range of unstable wave numbers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.