Abstract

The erosion of 25CrMo4 (EA4T) steel was studied to determine the surface and subsurface damage due to the high-frequency impingement of water droplets using an ultrasonic droplet generator. The material under investigation is railway axle steel, where the pulsating water jet can be used as a surface treatment method to increase the fatigue resistance. The surface processing is related mainly to standoff-distance which was changed to explore the effect of pulsating water jet while the other parameters were kept constant. Surface and subsurface conditions of the material were analyzed by means of light microscopy, scanning electron microscopy and transmission electron microscopy. By altering the standoff distance, it is possible to investigate droplet impingement from the point of view of the pulsating water jet process for different purposes, such as for maximal erosion or for an increase of fatigue resistance by introduction of severe plastic deformation to the surface. The maximum erosion state was reached for a standoff distance of 35 mm when a crater depth of 750 μm and a width of 1500 μm was observed. The mild conditions, when only plastic deformation is reached occurred at a standoff distance of 21 mm. The occurrence of subsurface cavities in materials with higher hardness indicates a significant penetration ability of the periodic high-density action of water droplets at subsonic speeds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.