Abstract

Because of similar pathophysiologic changes, oleic acid (OA)-induced pulmonary edema has been well established as an experimental model of certain types of ARDS. Data in the literature indicate changes mostly in global pulmonary mechanical parameters (lung resistance and compliance) during permeability-type edema. Therefore, we designed this study (1) to separate the OA-induced mechanical responses into airway and parenchymal components, and (2) to examine the relationship between the mechanical parameters and the degree of edema. Anaesthetized, paralyzed, mechanically ventilated rats were given iv. OA in doses of 0 (C n=9), 0.05 (OA0.05 n=8), 0.1 (OA0.1 n=10) and 0.3 (OA0.3 n=5) ml/kg. Respiratory system impedance was measured with a wave-tube low-frequency forced oscillation technique, and a model fitting was used to estimate airway (Raw) and lung tissue parameters (G, parenchymal damping; H, elastance). Pulmonary edema was quantified by gravimetric analysis (WW/DW, wet-to-dry weight ratio). In the OAL0.05 group, transient, but significant increase in Raw, only slight increase in H, and no response in G was observed. Different responses were obtained in OA0.1: significant Raw, G, and H values in survivors; rapid and significantly higher responses in all three parameters in non-survivors. Extremely large parameter values were measured in OA0.3. We found that OA caused dose-related increases in WW, DW and WW/DW. Highly significant correlations were found between the degree of edema and G or H, but not Raw. This study demonstrates that low dose of OA had only transient lung mechanical effects; however, it resulted in mild edema. The higher dose elicited significant airway and tissue changes (smaller responses in survivors than in non-survivors), and severe edema. The strong correlation between lung tissue parameters and the degree of edema suggests that the OA-induced acute lung injury is manifested primarily in the alterations in parenchymal mechanics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.