Abstract
To clarify the role of the pulmonary microvasculature in adjusting to increased pulmonary blood flow, we measured arteriolar and venular pressure by the servo-null micropuncture method while changing the pulmonary blood flow in isolated perfused cat lungs. We divided the lung vasculature into three longitudinal segments: 1) arterial (pulmonary artery to 30- to 50-microns arteriole), 2) microvascular (between 30- to 50-microns arteriole and venule), and 3) venous (30- to 50-microns venule to left atrium). The vascular resistance was calculated by dividing the pressure gradient by the flow. The pressure gradient of the microvascular segment did not increase, whereas the pressure gradient of the arterial and venous segments increased simultaneously with flow rate. Total and microvascular resistance decreased with increase of flow rate. Resistances of the arterial and venous segments did not change with increase in flow. We conclude that the microvasculature plays a crucial role in preventing pulmonary hypertension with increases in flow by decreasing microvascular resistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.