Abstract

The tumor suppressor gene PTEN is one of the most often deleted genes in human prostate cancer. Loss of PTEN is an important event in prostate carcinogenesis. Metabolic reprogramming induced by PTEN loss fuels malignant growth and proliferation of prostate cancer cells. Targeted metabolomics analysis was used to investigate the effects of PTEN loss on intracellular metabolic pathways in prostate cancer cells. DU-145 cells were transfected with PTEN siRNAs (siRNA-1 and siRNA-2) for 48 h, and endogenous PTEN expression was monitored by western blotting. Changes in intracellular metabolites were determined by liquid chromatography-tandem mass chromatography (LC-MS/MS) and gas chromatography-mass spectrometry (GC-MS). Most intracellular metabolites involved in glycolysis and glutaminolysis were increased in PTEN knockdown prostate cancer cells. In addition, most intracellular metabolites involved in fatty acid de novo synthesis, fatty acid beta oxidation and branched chain amino acid catabolism were also increased in PTEN knockdown prostate cancer cells. These results revealed that PTEN loss induced the metabolic reprogramming of prostate cancer cells and promoted the malignant proliferation of prostate cancer cells. The present metabolomics analysis indicates that tumor suppressor gene PTEN mutation or deletion can induce metabolic reprogramming in prostate cancer cells and tumorigenesis by altering the metabolic flux of glycolysis, glutaminolysis, fatty acid metabolism and branched chain amino acid catabolism pathways. Metabolic reprogramming is one of the contributors to PTEN-loss driven prostate cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call