Abstract
Engineered myoglobins were recently shown to be effective catalysts for abiological carbene and nitrene transfer reactions. Here, we investigated the impact of substituting the conserved heme-coordinating histidine residue with both proteinogenic (Cys, Ser, Tyr, Asp) and non-proteinogenic Lewis basic amino acids (3-(3′-pyridyl)-alanine, p-aminophenylalanine, and β-(3-thienyl)-alanine), on the reactivity of this metalloprotein toward these abiotic transformations. These studies showed that mutation of the proximal histidine residue with both natural and non-natural amino acids result in stable myoglobin variants that can function as both carbene and nitrene transferases. In addition, substitution of the proximal histidine with an aspartate residue led to a myoglobin-based catalyst capable of promoting stereoselective olefin cyclopropanation under nonreducing conditions. Overall, these studies demonstrate that proximal ligand substitution provides a promising strategy to tune the reactivity of myoglobin-based carbene and nitrene transfer catalysts and provide a first, proof-of-principle demonstration of the viability of pyridine-, thiophene-, and aniline-based unnatural amino acids for metalloprotein engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.