Abstract

A stearic acid-grafted chitosan oligosaccharide (CS-SA) micelle has been demonstrated as an effective gene carrier in vitro and in vivo. Although being advantageous for DNA package, protection, and excellent cellular internalization, a CS-SA based delivery system may lead to difficulties in the dissociation of polymer/DNA complexes in intracells. In this research, bovine serum albumin (BSA) with a different isoelectric point value (4.7, 6.0 and 9.3) was synthesized and incorporated into a CS-SA based gene delivery system. CS-SA/DNA binary complexes and CS-SA/BSA/DNA ternary complexes were then prepared and characterized. The binding ability of the CS-SA vector with DNA was not affected by the incorporation of BSA. However, referring to the transfection activity, the BSA of different isoelectric point value (pI) had a distinct influence on the CS-SA/BSA/DNA complexes. CS-SA/BSA(4.7)/DNA and CS-SA/BSA(6.0)/DNA complexes had better transfection efficiency than binary complexes, especially CS-SA/BSA(4.7)/DNA complexes which showed the highest transfection efficiency. On the contrary, CS-SA/BSA(9.3)/DNA complexes had undesirable performances. Interestingly, the incorporation of BSA(4.7) in CS-SA/DNA complexes significantly enhanced the dissociation of polymer/DNA complexes and improved the release of DNA intracellular without influencing their cellular uptake. The aforementioned results indicated that the acid group in protein played an important role in enhancing the transfection efficiency of CS/BSA/DNA complexes, and the study provided guidelines in the design of an efficient vector for DNA transfection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call