Abstract

AbstractChloramphenicol, actinomycin D, and other inhibitors of protein synthesis promote abscission in several plant genera. Abscission is accelerated in species where an abscission layer is present, as well as in tissue where no abscission layer develops prior to abscission. The inhibitors promote abscission in species where cell division is reported to precede the separation processes as well as in tissues where no cell division is associated with the initiation of abscission. Indoleacetic acid (IAA) or auxin precursors, when applied with chloramphenicol and aclinomycin D, overcome the promotive effects of the inhibitors on abscission. These inhibitors apparently do not promote abscission through their effects on auxin precursor conversion, IAA transport, and IAA destruction in the petiole. IAA increases the incorporation of leucine‐1‐14C into a trichloroacetic acid precipitable fraction of the abscission zone under conditions where abscission is retarded. A low concentration of IAA which accelerates abscission, decreases incorporation of leucine into protein. Other promoters of abscission — chloramphenicol, d‐aspartic acid, and gibberellic acid —also decrease the incorporation of leucine into the protein of the abscission zone. The data indicate that enzymes required for the degradative processes associated with abscission are already present in the abscission zone whereas a continuous synthesis of protein is required for the retention of the leaf.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call