Abstract

Emulsion-type sausages were produced, at 80°C for either 0, 10, 20 or 30min, using homogeneous Taihu pork batters. Low-field nuclear magnetic resonance (LF-NMR), with or without deuterium oxide (D2O) substitution, evaluated the proton mobility states related to both water and fat molecules, or fat molecules only, respectively, in the sausage samples, during heat-induced gelation. The decreasing trend in the area proportion of main peak T21, reflected a tighter gel structure in emulsion-type sausages. Raman spectra (400–3600cm–1) revealed decreased α-helix, but increased β-sheet, β-turns and random coil contents, during the gelling process. Moreover, principal component analysis (PCA) showed significant correlations between secondary protein structures with distribution of water and fat in the gel matrix. Furthermore, this study established the relationship of water and fat protons mobility with changes in secondary protein structures, and described the critical time of gel formation in emulsion-type pork sausages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.