Abstract

Steady-state and time-resolved absorption and fluorescence spectroscopic experiments have been carried out at room and cryogenic temperatures on aggregated and unaggregated monomeric and trimeric LHCII complexes isolated from spinach chloroplasts. Protein aggregation has been hypothesized to be one of the mechanistic factors controlling the dissipation of excess photo-excited state energy of chlorophyll during the process known as nonphotochemical quenching. The data obtained from the present experiments reveal the role of protein aggregation on the spectroscopic properties and dynamics of energy transfer and excited state deactivation of the protein-bound chlorophyll and carotenoid pigments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.