Abstract

The rectification behaviours in organic magnetic/nonmagnetic co-oligomer spin rectifiers are investigated theoretically. It is found that both the charge current and the spin current through the device are rectified at the same time. By adjusting the proportion between the magnetic and nonmagnetic components, the threshold voltage and the rectification ratio of the rectifier are modulated. A large rectification ratio is obtained when the two components are equal in length. The intrinsic mechanism is analysed in terms of the asymmetric localization of molecular orbitals under biases. The effect of molecular length on the rectification is also discussed. These results will be helpful in the future design of organic spin diodes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.