Abstract

Undigested carbohydrates and some dietary fibers are fermented in the large intestine to form short-chain fatty acids (SCFA), including acetate, propionate, and butyrate. It has been suggested that some of the beneficial effects of high-carbohydrate, high-fiber diets on carbohydrate and lipid metabolism are mediated by the metabolism of SCFA in the liver. Propionate has been shown in vitro to decrease glucose production in rat hepatocytes. The aim of the present study was to investigate the effects of propionate on carbohydrate metabolism in normal and streptozocin (STZ)-induced diabetic male Sprague-Dawley rats. Rats were fed a high-fat diet with or without sodium propionate supplementation (either 0.5% or 5% wt/wt) for 4 weeks. At the completion of the feeding period, body weight and liver glycogen concentrations were significantly decreased in STZ-diabetic rats and were unaffected by propionate supplementation. Although STZ-diabetic animals had elevated fasting plasma glucose, cholesterol, and triglyceride levels relative to nondiabetic rats, propionate supplementation had no significant effect on these parameters in either group. Basal and insulin-stimulated carbohydrate metabolism were assessed using the euglycemic clamp technique in overnight-fasted animals with 3(H)-6-glucose infusion. As expected, basal hepatic glucose production (HGP) was higher and the metabolic clearance rate of glucose (MCR) was lower in STZ-diabetic rats. High-dose insulin infusion (3 mU · kg −1 · min −1) suppressed HGP in nondiabetic and diabetic animals and increased the MCR in nondiabetic animals. However, propionate supplementation did not alter basal or insulin-stimulated HGP or the MCR in either nondiabetic or diabetic animals. It is concluded that oral propionate supplementation had no detectable effect on carbohydrate or lipid metabolism in either nondiabetic or STZ-diabetic rats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.