Abstract

This work studies the influence of the properties of nanocrystalline -titanium dioxide (ncTiO2) films on the performance of solar cells based on the Organic materials/ncTiO2 multilayer structure. That was investigated using X-ray diffraction, Atomic force microscopy (AFM), and Source-Measure Unit(SMU) under different ambient conditions. The device produced from batch A exhibit better performance compared to the device produced from batch B. The short circuit current, Jsc, increases from 0.03 mA/cm2 to 0.22 mA/cm2 , and the power conversion efficiency, η, from 0.01% to 0.09% in comparison between batches A and B solar cells. That is attributed to the grains of batch A nc-TiO2 having a size of 25 nm and a height of 100 nm, while particles of batch B nc-TiO2 film have a height of 40 nm and a size of 19 nm. These features cause to increase in the resistance and defects throughout the bulk region and interfaces of Batch B solar cells and impact the mechanism processes of charge generation of solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.