Abstract
A photo-triggered discharge is used to study the influence of three hydrocarbons (HCs), propene (C3H6), n-decane (C10H22), and toluene (C6H5CH3) on NO conversion in N2/O2/NO/HC mixtures, with 18.5% O2 concentration, 700 ppm of NO, and an hydrocarbon concentration ranging between 190 ppm and 2,700 ppm. The electrical system generates a transient homogeneous plasma, working under 400 mbar total pressure, with a 50 ns short current pulse at a repetition frequency up to a few Hz. The NO concentration at the exit of the reactor is quantified using absolute FTIR spectroscopy measurements, as a function of the specific deposited energy in the discharge and the mixture composition. Owing to the plasma homogeneity, the experimental results can be compared to predictions of a self-consistent 0-D discharge and kinetic model based on available data in the literature about reactions and their rate constants. It is shown that the addition of either propene (as for DBD or corona discharges) or n-decane to N2/O2/NO leads to an improvement of the NO removal as compared to the mixture without hydrocarbon molecules. The adopted kinetic schemes explain this effect for the two mixture types. On the other hand, both the experiments and model predictions emphasize that the addition of toluene does not lead to the improvement of NO conversion. Moreover, compounds that are useful for NOx reduction catalysis, such as aldehydes, are less produced in the mixture with toluene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.