Abstract
Onset of a geomagnetic substorm often intensifies the westward auroral electrojet, as well as produces asymmetric magnetic field at low-/mid-latitudes. Auroral electrojet and low latitude asymmetric indices are known to correlate well during substorms. These indices have been widely used to monitor the duration and strength of substorm activities. However, several processes, other than substorms, introduce local time asymmetry in magnetic field at low latitudes, which can substantially influence the ASY indices. Large number of substorms are observed in association with changes in the interplanetary magnetic field (IMF). It is known that sharp IMF Bz orientation changes result in penetration of interplanetary electric field (IEF) to lower latitudes, which affects the geomagnetic fields to different degree in different local times. In the present study, we demonstrate that sharp IMF Bz fluctuations during the expansion phases of substorms introduce additional asymmetry at low latitudes. The effect is clearly seen in ASYH, whereas ASYD remains almost unaltered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Atmospheric and Solar-Terrestrial Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.