Abstract

The sensory quality of coffee begins in the plant tree, where the characteristics of the fruits define the composition of the chemical precursors, which can be preserved or transformed in stages such as mucilage fermentation, and are the basis for the beverage attributes. This study evaluated three degrees of maturity and their comportment in fermentation under two temperatures and two-time extensions, establishing their sensory and chemical characteristics through analytical techniques such as liquid and gas chromatography. The effect of the prolongation time was evidenced for oxalic, quinic, citric acids, glucose, and fructose in two of the three degrees of maturity evaluated. The interaction of the process conditions increased the content of fructose and glucose in one of the states, being more evident at 20 °C. The treatments associated with the most advanced stage of maturity and with higher temperature decreased the scores of five sensory attributes and the fructose content increased by 48.50% and the glucose content increased by 47.31%. Advanced stages of maturity preserve quality standards, but their performance can be differential in postharvest processes, especially in those that are beyond the standards, such as those involving prolongations in different processes such as fermentation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call