Abstract

Recently, various memory devices have been actively studied as suitable candidates for synaptic devices, which are important memory and computing units in neuromorphic systems. One of the ways to manage these devices is off-chip training, where it is essential to transfer the pretrained weights accurately. Previous studies, however, have a few limitations, such as a lack of consideration of program errors that occur during the transfer process. Although the smaller the program error, the higher the accuracy, the corresponding increase in the program time must be considered. To evaluate the practical applicability, we fabricated Al <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> O <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> /TiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><i>x</i></sub> -based resistive random access memory (RRAM) and investigated the effect of program errors on program time and system degradation. It was confirmed that for smaller program errors, the program time was exponentially longer. Furthermore, we examined the effect of variation with respect to the number of quantized weight states ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${N}_{state}$ </tex-math></inline-formula> ) through system-level simulation. We observed that the optimized <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${N}_{state}$ </tex-math></inline-formula> varies depending on whether the program error is small or large. This result is meaningful as it experimentally shows the tradeoff between the program error, program time, and system performance. We expect it to be useful in the development of neuromorphic systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call