Abstract

Equal channel angular pressing (ECAP) is a well-established thermo-mechanical processing technique, which could induce the $c$ -axis texture of Nd2Fe14B in a melt-spun Nd13.5Fe73.8Co6.7B5.6Ga0.4 alloy. However, the effects of ECAP processing parameters, such as temperature, back pressure (BP), and multiple-pass ECAP routes, remain unknown for this alloy. In this paper, we have investigated the effects of these processing parameters on the $c$ -axis texture formation. It is found by X-ray diffraction macrotexture analysis that the maximum intensity of (001) pole figures for the tetragonal-Nd2Fe14B phase ( $I_{\max }$ ) shows an increase from 2.7 to 4.1 m.r.d. (multiples of random distribution) by increasing the ECAP temperature from 723 to 823 K, while the difference in remanent magnetization between easy and hard directions ( $\Delta M_{r}$ ) rises from 24.0 to 41.5 Am2/kg. When the BP was increased from 0.25 to 0.5 GPa at 823 K, $I_{\max }$ showed an increase from 2.8 to 4.1 m.r.d. However, $I_{\max }$ saturated for BPs above 0.5 GPa, suggesting that BP has limited effect on the texture formation, although it is necessary for the compaction of the alloy powders. Two multiple-pass ECAP routes conventionally known as routes A and C were employed for two-pass ECAP at 823 K. It is found that route A processing is effective in enhancing the texture formation, while the texture is lost by a subsequent pressing when adopting route C. Therefore, the compaction of Nd13.5Fe73.8Co6.7B5.6Ga0.4 alloy powder using route A ECAP passes with 0.5 GPa BP at 823 K results in pronounced texture, which is beneficial for anisotropic hard magnetic properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.