Abstract
Abstract We present the preparation of polyamide 6 (PA6)/Vapor Grown Carbon Fiber (VGCF) composites by melt compounding. Two commercialized forms of PA6 with different melt flow rates (herein named PA6-low and PA6-high.) and two VGCF, VGCF-H (aspect ratio: 40) and VGCF-S (aspect ratio: 100) were used in this study. Young's modulus and the yield strength increased when small amount of VGCF (e.g. 1 wt.%) was added to PA6, and the properties of PA6-low/VGCF composites increased with a decrease in the aspect ratio of VGCF. According to scanning electron microscopy (SEM) observations, the dispersion state of VGCF in PA6-low/VGCF-S composites is superior to the PA6-low/VGCF-H composites. This may be due to the weakening of tensile properties caused by cracks between the adjoining crystals generated by the large amount of VGCF that act as nucleants. Hence, the aspect ratio of VGCF has an influence on the tensile properties of PA6/VGCF composites. The mechanical properties were shown to increase with VGCF-H length. Matrix viscosity and the screw rotation speed were also found to influence the mechanical properties of PA6/VGCF-H composites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.