Abstract

Cryogenic electron microscopy at atomic length scales was used to study the structure of self-assembled crystalline nanosheets obtained from a series of polypeptoids with the same chain architecture but with different end groups. While long-range order is enhanced by slowing down the self-assembly process, the dominant crystalline motif was found to be a sensitive function of both processing details and end group chemistry. In some cases, adjacent rows of polypeptoid molecules adopt anti-parallel V-shaped side chain conformations. In other cases, adjacent rows of polypeptoid molecules adopt parallel V-shaped side chain conformations. Interestingly, the unit cell is rectangular in both cases with dimensions a = 4.5 Å and c = 50 Å. In all cases, long-range order, quantified by the average number of concatenated unit cells of the same type, is more prevalent along the a direction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.