Abstract

Lignin from pulping is recovered in a wet form, making it ideal for hydrothermal carbonisation (HTC). This study investigates the effects of temperature (200–280 °C), residence time (1–6 h), and water to biomass mass ratio (2:1–6:1) on the composition of the resultant biocoal and the extent of alkaline and alkaline metal removal during HTC of pine Kraft lignin (PKL). Consistent with studies on other biomass materials, temperature exhibited the most significant effect on biocoal yield and properties, followed by residence time showing a marginal effect and varying the water to lignin mass only affecting alkaline and alkaline earth metals removal. Biocoal yields were in the range of 76–95 % (80–97 % on a carbon basis) and, compositionally, the biocoal obtained corresponded to sub-bituminous (220–260 °C) and high volatile bituminous coals (280 °C). Gas yields are low with the gas comprising mainly CO2 (98 v/v). The optimum temperature, time and biomass to water ratio for alkaline and alkaline earth metals removal was 260 °C, 3 h and 5:1 under which 93–95 % for sodium (Na) and potassium (K) and 75–80 % for magnesium (Mg) and calcium (Ca) removal were achieved. Solid-state 13C Nuclear Magnetic Resonance (NMR) revealed that during HTC, the oxygen-containing bonds of esters, ethers, and carboxylic groups were dissociated to produce lower-molecular weight including phenolic compounds dissolved in the process water. These findings have shown that the HTC is a promising alternative thermochemical route for coalification of wet PKL to a low ash coal-like fuel similar to sub-bituminous coal in rank that has potential applications for carbonisation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.