Abstract

ABSTRACTPoly(3,4-ethlyenedioxythiophene), PEDOT, has found wide use in applications such as electrostatic coatings, antistatic layers and electrode materials in electronic devices. Electrochemical deposition of PEDOT is a prominent means of obtaining thin, uniform films. However, the relationship of these films' properties to their morphological structure is still poorly understood. We have prepared PEDOT films by electrochemical oxidation of monomer (3,4-ethylenedioxythiophene), EDOT, under constant current conditions, employing a variety of electrolytes, and processing conditions. We report the effect of using different dopants, deposition time, deposition temperature and current density on the observed conductivity of PEDOT films. Atomic force microscopy studies were carried out to determine the possible effect of the process variables on the resulting film morphology. Also, the effect of residual solvent on the conductivity of the films was studied by thermogravimetric analysis (TGA).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.