Abstract
This study investigates the effect of heat generation and thermal inputs on the frictional characteristics of interlayer dielectric (ILD) and copper chemical mechanical planarization (CMP) processes. A series of ILD and copper polishes were completed with controlled pad temperatures of ∼12, 22, 33, and 45°C and various pressures and velocities. Coefficient of friction results indicated an increasing trend for ILD and copper polishing with a rise in polishing temperature. Dynamic mechanical analysis of the used polishing pads revealed links between the softening effects of the pad with rising temperatures and increased shear forces resulting from the contact of the pad and wafer during polishing. The results presented are critical for establishing pad designs with stable dynamic mechanical properties and prolonged pad life.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.