Abstract

316L stainless steel pipes are widely used in the storage and transportation of low-temperature media due to their excellent low-temperature mechanical properties and corrosion resistance. However, due to their low thermal conductivity and large coefficient of linear expansion, they often lead to significant welding residual tensile stress and thermal cracks in the weld seam. This also poses many challenges for their secure and reliable applications. In order to effectively control the crack defects caused by stress concentration near the heat-affected zone of the weld, this paper establishes a thermal elastoplastic three-dimensional finite element (FE) model, constructs a welding heat source, and simulates and studies the influence of process parameters on the residual stress around the pipeline circumference and axial direction in the heat-affected zone. Comparison and verification were conducted using simulation and experimental methods, respectively, proving the rationality of the finite element model establishment. The axial and circumferential residual stress distribution obtained by the simulation method did not have an average deviation of more than 30 MPa from the numerical values obtained by the experimental method. This study also considers the effects of welding energy, welding speed, and welding start position on the pipe's circumferential and axial residual stress laws. The results indicate that changes in welding energy and welding speed have almost no effect on the longitudinal residual stress but have a more significant effect on the transverse residual stress. The maximum transverse residual stress is reached at a welding energy of 1007.4~859.3 J/mm and a welding speed of 6.6 mm/s. Various interlayer arc-striking deflection angles can impact the cyclic phase angle of the transverse residual stress distribution in the seam center, but they do not alter its cyclic pattern. They do influence the amplitude and distribution of the longitudinal residual stress along the circumference. The residual stress distribution on the surface of the pipe fitting is homogenized and improved at 120°.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.