Abstract

In this paper, a brake cylinder coating comprising a composite material of an Fe3Al and Cr3C2 mixed powder was prepared by adding laser cladding onto carbon structural steel. We studied the influence of process parameters on the microstructure and tribological properties of the cladding materials using scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and 3D white light interferometer and wear tests. The influence of different processes on the morphology of the carbide strengthening phase was found to be relatively small with a Cr3C2 content of 15 wt.%. The carbides mainly exhibited a network structure in each group of cladding layers. The area of the network strengthening phase varied under different processes. Of the cladding layers formed with different processes, the scanning speed of the 0.003 m/s cladding layer had the lowest wear rate. When the laser power was too low or the powder feed rate was too high, unmelted Cr3C2 particles could be found in the cladding layer. During the wear process, the particles peeled off, causing severe abrasive wear. When the powder feeding rate was too low, more materials in the base material entered the cladding layer. This made the composition of the cladding layer similar to that of the grinding material, resulting in severe adhesive wear.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.