Abstract

Selective laser melting (SLM) offers significant benefits, including geometric freedom and rapid production, when compared with traditional manufacturing techniques. However, the materials available for SLM production remain limited, restricting the industrial adoption of the technology. The mechanical properties and microstructure of many aluminium alloys have not been fully explored, as their manufacturability using SLM is extremely challenging. This study investigates the effect of laser power, hatch spacing and scanning speed on the mechanical and microstructural properties of as-fabricated aluminium 2024 alloy (AA2024) manufactured using SLM. The results reveal that almost crack-free structures with high relative density (99.9%) and Archimedes density (99.7%) have been achieved. It is shown that when using low energy density (ED) levels, large cracks and porosities are a major problem, owing to incomplete fusion; however, small gas pores are prevalent at high-energy densities due to the dissolved gas particles in the melt pool. An inversely proportional relationship between ED and microhardness has also been observed. Lower ED decreases the melt pool size and temperature gradients but increases the cooling rate, creating a fine-grained microstructure, which restricts dislocation movement, therefore increasing the microhardness. The highest microhardness (116 HV0.2), which was obtained from one of the lowest EDs used (100 J/mm3), is 45% higher than as-cast AA2024-0, but 17% lower than wrought AA2024-T6 alloy.

Highlights

  • Aluminium (Al) and its alloys are extensively used in engineering applications, in the transportation sector

  • Selective laser melting (SLM) in particular can process a wide range of metals and their alloys, with the aid of a combination of different technologies, such as computer-aided design (CAD), computer-aided manufacturing (CAM) and computer numerical control (CNC) in one system [9]

  • This study investigates the effect of laser power, hatch spacing and scanning speed on the mechanical properties and microstructure of as-fabricated AA2024 alloy manufactured using SLM

Read more

Summary

Introduction

Aluminium (Al) and its alloys are extensively used in engineering applications, in the transportation sector. The 2xxx series of Al alloys, especially, are preferred by the aerospace industry, owing to their strength, fatigue resistance and damage tolerance, along with high fracture toughness, which allows widespread use in airframe applications [1]. The significance of these alloys ( AA2024) in Cardiff School of Engineering, Cardiff University, Cardiff CF24 3AA, UK. Selective laser melting (SLM) in particular can process a wide range of metals (i.e. aluminium, iron, nickel, titanium and steel) and their alloys, with the aid of a combination of different technologies, such as computer-aided design (CAD), computer-aided manufacturing (CAM) and computer numerical control (CNC) in one system [9]

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call