Abstract

Weighted principal component analysis is used to predict the optimal machining parameters for EN 31 tool steel in electrochemical machining for minimum surface roughness and maximum material removal rate based on L27 Taguchi orthogonal design. For this, multi-response performance index is calculated to derive an equivalent single objective function and then Taguchi method is used to optimize the process parameters. The separable influence of individual machining parameters and the interaction between these parameters are also investigated by using analysis of variance (ANOVA). Results show that the main significant factor on MRR and surface roughness is electrolyte concentration. The effects of process parameters viz. electrolyte concentration, voltage, feed rate and inter-electrode gap on MRR and surface roughness are also investigated using 3D surface and contour plots. Finally, the surface morphology is studied with the help of scanning electron microscopy (SEM) images.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call