Abstract

Weighted principal component analysis is used to predict the optimal machining parameters for EN 31 tool steel in electrochemical machining for minimum surface roughness and maximum material removal rate based on L27 Taguchi orthogonal design. For this, multi-response performance index is calculated to derive an equivalent single objective function and then Taguchi method is used to optimize the process parameters. The separable influence of individual machining parameters and the interaction between these parameters are also investigated by using analysis of variance (ANOVA). Results show that the main significant factor on MRR and surface roughness is electrolyte concentration. The effects of process parameters viz. electrolyte concentration, voltage, feed rate and inter-electrode gap on MRR and surface roughness are also investigated using 3D surface and contour plots. Finally, the surface morphology is studied with the help of scanning electron microscopy (SEM) images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.