Abstract

In rapid prototyping (RP), 3D printing is growing fast due to its ability to build different complex geometrical shapes and structures in least possible time. The mechanical behavior of 3D printed parts depends on the interaction of different process parameters and the raw material properties. In this work, the effect of process parameters, namely, nozzle diameter, layer thickness, and part bed temperature, has been studied on mechanical properties like tensile strength and flexural strength in 3D printing process. Material used in the study is solidified polylactic acid (PLA). It was observed that tensile strength and flexural strength increased with increase in part bed temperature. It was further observed that tensile strength decreased with increase with layer thickness whereas flexural strength increased. With respect to nozzle diameter, it was observed that tensile strength increased while flexural strength initially decreased and then increased with increase in nozzle diameter. SEM analysis has been done to evaluate the mechanism of failure of the parts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call