Abstract

Deep drawing process depends on the large number of process parameters and their interdependence. Optimization of process parameters in deep drawing is a vital task to reduce manufacturing cost and understand their influence on the deformation behaviour of the sheet metal. In this paper, significance of important process parameters namely, punch speed, blank holder pressure (BHP) and temperature on the deep-drawing characteristics of a Ti-6Al-4V alloy are investigated. Taguchi technique was employed to identify the influence of these parameters on thickness distribution. The finite element model of deep drawing process has been built up and analyzed using Dynaform version 5.6.1 with LS-Dyna version 971 as solver. Based on the predicted thickness distribution of the deep drawn circular cup and analysis of variance (ANOVA) results, it is concluded that punch speed has the greatest influence on the deep drawing of Ti-6Al-4V alloy blank sheet. Temperature and BHP effect are negligible in deep drawing of Ti-6Al-4V alloy at low warm temperatures (less than 450°C) but it may contribute to a significant extent at higher temperature. Also thickness distribution is predicted using artificial neural network (ANN). It is observed that the predicted thickness distribution is in good agreement with the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.